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Sergio E Baranzini,2 Thomas M Mack,3 Antoine Lizée,2
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Abstract

Background: Based on epidemiological commonalities, multiple sclerosis (MS) and

Hodgkin lymphoma (HL), two clinically distinct conditions, have long been suspected to

be aetiologically related. MS and HL occur in roughly the same age groups, both are

associated with Epstein-Barr virus infection and ultraviolet (UV) light exposure, and they

cluster mutually in families (though not in individuals). We speculated if in addition to

sharing environmental risk factors, MS and HL were also genetically related. Using data

from genome-wide association studies (GWAS) of 1816 HL patients, 9772 MS patients

and 25 255 controls, we therefore investigated the genetic overlap between the two

diseases.

Methods: From among a common denominator of 404 K single nucleotide polymorph-

isms (SNPs) studied, we identified SNPs and human leukocyte antigen (HLA) alleles
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independently associated with both diseases. Next, we assessed the cumulative gen-

ome-wide effect of MS-associated SNPs on HL and of HL-associated SNPs on MS. To

provide an interpretational frame of reference, we used data from published GWAS to

create a genetic network of diseases within which we analysed proximity of HL and MS

to autoimmune diseases and haematological and non-haematological malignancies.

Results: SNP analyses revealed genome-wide overlap between HL and MS, most prom-

inently in the HLA region. Polygenic HL risk scores explained 4.44% of HL risk

(Nagelkerke R2), but also 2.36% of MS risk. Conversely, polygenic MS risk scores ex-

plained 8.08% of MS risk and 1.94% of HL risk. In the genetic disease network, HL was

closer to autoimmune diseases than to solid cancers.

Conclusions: HL displays considerable genetic overlap with MS and other autoimmune

diseases.

Introduction

Hodgkin lymphoma (HL) is an immunologically active ma-

lignant neoplasm of B cells in a heterogeneous reactive cellu-

lar infiltrate.1 HL is roughly equally common in men and

women, and in socioeconomically affluent populations HL

occurrence displays a bimodal age distribution, with separ-

ate peaks in younger adults (15-34 years old) and older

adults (over 50 years old).2–4 In socioeconomically deprived

settings, in contrast, there is no young adult HL incidence

peak, but rather one among children.5

Multiple sclerosis (MS) is a debilitating disease of the

central nervous system (CNS) characterized by chronic

polycellular inflammation (including T cells, monocytes

and B cells), myelin loss, gliosis, axonal and oligodendro-

cyte pathology and accumulation of progressive neuro-

logical disability.6 Onset is typically between the ages of

20 to 40 years, with a female to male ratio of three to one.6

Based on conspicuous epidemiological similarities be-

tween the two conditions, e.g. regarding age patterns and

geographical distributions, Newell in 1970 proposed that

HL and MS were somehow aetiologically related.7

Subsequent epidemiological studies have tested this hy-

pothesis by assessing clustering of HL with MS in individ-

uals and in families. Whereas previous studies generally

suggest that patients suffering from either condition are

not at increased risk of the other,8–16 two partially overlap-

ping investigations have reported mutual clustering of the

two diseases among first-degree relatives.17,18

Familial clustering of HL and MS may reflect shared en-

vironmental and genetic risk factors. Evidence implicates

infection with the Epstein-Barr virus (EBV)19–22 and levels

of ultraviolet light exposure23,24 in the pathogenesis of the

roughly one-third of HL cases that harbour EBV in the ma-

lignant cells (EBV-positive HL), as well as in the pathogen-

esis of MS. Moreover, common genetic risk factors have

emerged in HL and MS.25–28 For example, HLA-A*02 ap-

pears to be associated with a decreased risk of both MS29

and EBV-positive HL,30,31 and DNA variants in the Relish

oncogene (REL, a member of the NF-kappaB transcription

factor family) have been associated with both MS32 and

the EBV-negative subset of HL.25 This suggests that the re-

lationship between HL and MS is not limited to either

EBV-positive or EBV-negative HL.

Unveiling of aetiological commonalities for HL and MS

could contribute to the understanding of their pathogenesis

and might even have clinical implications. We therefore

combined data from previous genome-wide association

studies (GWAS) of MS28 and HL26,27,33,34 and evaluated

the genetic overlap between the two diseases.

Methods

Overview

Analysis was performed on a total of 1816 HL patients,

9772 MS patients and 25 255 controls, using 404 K single

Key Messages

• Epidemiological similarities have suggested common aetiologies for Hodgkin lymphoma and multiple sclerosis.

• Consistent with this hypothesis, detailed analyses reveal considerable genetic overlap between Hodgkin lymphoma

and multiple sclerosis.

• Genetically, Hodgkin lymphoma lies closer to autoimmune diseases than to solid cancers.
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nucleotide polymorphisms (Figure 1). We first sought to iden-

tify single nucleotide polymorphisms (SNPs) and HLA alleles

that associated independently with both diseases. Next, we

calculated polygenic risk scores to assess the cumulative gen-

ome-wide effect of MS-associated SNPs on HL, and of HL-

associated SNPs on MS. To describe the overlap between HL

and MS, we performed a protein interaction network-based

pathway analysis (PINBPA) on associated genes from each

disease, and then investigated the intersection of networks for

biological relevance. To place the genetic similarity between

HL and MS in context, we used data from previously re-

ported GWAS to create a diseasome: a network of diseases.

Within the diseasome, we analysed proximity of HL and MS

to autoimmune diseases and haematological and non-haem-

atological malignancies (‘solid’ cancers).

HL and MS dataset characteristics

The HL26,27,33,34 and MS28 cohorts have previously been

described in detail. For MS, data from the Wellcome Trust

Case Control Consortium 2 meta-analysis project totalled

9772 cases and 17 376 controls. Individuals in this dataset

were of European descent and originated from 15 geograph-

ical regions, including the USA, Australia, New Zealand and

numerous European countries. Included in this dataset were

summary-level association results for a total of 464 434 SNPs.

For HL, data from a recent meta-analysis of three

GWAS studies consisted of 1816 cases and 7879 controls.34

Individuals in this dataset were of European descent and ori-

ginated from locations in the USA and Europe. Summary-

level meta-association results were included for a total of 1

036 304 SNPs. The cases were subdivided into nodular

lymphocytic predominant and classical HL, and classical

HL further divided into subgroups by EBV tumour status

(EBV-positive and EBV-negative) as determined by immu-

nohistochemistry or in situ hybridization as previously

described27 and histology [mixed cellularity (MC), nodular

sclerosis (NS) and other or unspecified], when such data

were available. Summary characteristics are shown in Table

S1 (available as Supplementary data at IJE online).

The HL and MS datasets were merged (by rsID), giving a

final dataset containing summary-level results for 404 069

overlapping SNPs.

Overlap between diseases: SNP-level

We followed a procedure similar to that used in other meta-

analyses of complex genetic diseases.35 To assess genetic

Figure 1. Study design and data analysis procedures. Results from previously reported genome-wide associations studies (GWAS) of Hodgkin lymph-

oma (HL) and multiple sclerosis (MS) were used to assess genetic overlap between the two diseases. Single nucleotide polymorphisms (SNPs) inde-

pendently associated with both HL and MS were identified, and disease-specific polygenic risk scores were compared in HL cases, MS cases and

healthy controls. Protein-interaction network-based pathway analysis (PINBPA) was performed on the intersection of nominally associated (P < 0.05)

SNPs in HL and MS and gene ontology (GO) analysis was performed to identify common genetic pathways. Genetic similarity between HL and MS

was further evaluated in the context of other immune diseases, haematological malignancies and solid cancers by constructing a diseasome using

data from previously reported GWAS.
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overlap between HL and MS, we sought SNPs that associated

independently with both diseases. We identified top (P-value

< 5 x 10�8) independent (r2 < 0.1 in CEU) MS-susceptibility

SNPs, and determined how many of these SNPs are associ-

ated with HL after correction by Benjamini-Hochberg

method (corrected P-value< 0.05). The process was repeated

for increasingly liberal values of the P-value threshold for

defining MS susceptibility SNPs (ranging from P-value < 5 x

10�8 to P-value < 5 x 10�2). Corresponding analysis was re-

peated after switching roles for HL and MS. The HLA region

was analysed in further detail using imputed classical HLA al-

leles (see Supplementary methods for details, available as

Supplementary data at IJE online).

Supplementary analysis considered MS SNPs on subsets

of the HL dataset as defined by tumour EBV status (EBV-

positive HL and EBV-negative HL), tumour histology

[nodular sclerosis (NS), mixed cellularity (MC)], or tu-

mour histology combined with age (NS among 15-35 year

olds), in order to explore possible heterogeneity among the

HL samples.

Overlap between diseases: polygenic risk

Polygenic risk scores were calculated to test the cumulative

effect of SNPs associated with HL on MS and vice versa, as

described in detail in other complex genetic diseases.32,35–

37 For each trait (HL and MS), sets of top independent

SNPs were chosen as described above. Multiple sclerosis

genetic burden (MSGB) and Hodgkin lymphoma genetic

burden (HLGB) were calculated for each individual: the

weighted sum of the number of risk alleles at each SNP in

the set, weighted by the log-odds ratio of association for

each SNP. We assessed the ability of MSGB to distinguish

HL cases from controls and the ability of HLGB to distin-

guish MS cases from controls using the Nagelkerke’s R2

(note that the P-values of the linear regression models will

largely be driven by large sample sizes, and the biological

significance lies in the R2 value rather than the P-value).

This analysis was repeated for subgroups of HL (EBV-posi-

tive, EBV-negative, MC and NS).

Protein interaction network-based pathway

analysis (PINBPA)

To visualize the sets of interacting genes found to associate

with both HL and MS, a protein interaction network-

based pathway analysis (PINBPA) was performed using

methods described previously.32 Sub-networks of aggre-

gate score of three or greater were chosen as associated.

Network discovery was performed independently in HL

and MS, networks of score three or greater being chosen as

associated. The intersection of the HL and MS networks

was visualized. Gene ontology analysis was performed on

genes in this intersection.

Diseasome analysis

To further assess genetic similarity between HL and MS, a

representation of the human diseasome (network of dis-

eases)38,39 was constructed in which diseases (nodes) were

connected by the extent of their shared genetic aetiology

(edges)40,41 as reported by the GWAS catalogue42. This

network is termed the diseasome. Diseases were manually

classified as haematological malignancies, solid cancers

or autoimmune diseases. Pairwise proximity measures

between diseases were calculated as described in

Supplementary methods. Relative distances between hae-

matological malignancies, solid cancers, and auto-immune

diseases were tested by t-test.

Results

SNP and HLA allele overlap between HL and MS

We identified SNPs associated with MS across multiple

P-value thresholds ranging from P-value < 5 x 10�8 to

P-value < 5 x 10�2. Among these SNPs, we then identified

those that were also associated with HL (FDR < 0.05; false

discovery rate with Benjamini-Hochberg adjustment of

P-values for the total number of SNPs tested at each

threshold) (Table 1).

At a threshold of P-value < 5 x 10�8, 429 SNPs were

associated with MS; 36 of these 429 were independent (r2

< 0.1), and three of these 36 were associated with HL at

an FDR < 0.05 (Benjamini-Hochberg correction for 36

tests), summarized in row 1 of Table 1. Panel 1 of Table 1

shows results for other P-value thresholds and panel 2

shows results when top HL SNPs were tested for associ-

ation in MS. SNPs found to be overlapping (final column

of Table 1) are described in Table 2 (after HLA is

removed). While the actual number and proportion of

overlapping SNPs varied by the P-value threshold, the ma-

jority of overlapping SNPs belonged to genes in the HLA

region of chromosome 6; however, several mutually associ-

ated non-HLA SNPs were also detected (Table 2; Figure

S1, Table S2, available as Supplementary data at IJE on-

line). It should be noted that the direction of association

was not taken into account in this analysis, which reveals

only shared genetic risk loci (see genetic burden analysis

below, which accounts for direction of association).

The SNP-level overlap between diseases was repeated for

each HL subgroup: MS versus EBV-positive HL, MS versus

EBV-negative HL, MS versus NS-HL, MS versus NS-HL in
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15 to 35-year-olds and MS versus MC-HL. These analyses

revealed no major differences between HL subgroups.

Given the strong genetic overlap at HLA, HLA alleles were

imputed from SNP information via the HIBAG algorithm (see

Supplementary methods, available as Supplementary data at

IJE online). Figure 2 demonstrates overlap between risk alleles

for EBV-negative HL and risk alleles for MS, as well as over-

lap between protective alleles for EBV-negative HL and pro-

tective alleles for MS. In contrast, there is no overlap between

risk alleles for EBV-positive HL and risk alleles for MS,

whereas there is overlap between protective alleles for EBV-

positive HL and protective alleles for MS. Table S3 (available

as Supplementary data at IJE online) provides details of HLA

allelic P-values and odds ratios in each disease. Analysis of

NS-HL revealed a pattern similar to EBV-negative HL.

Polygenic risk overlap between diseases

To assess the extent of genetic risk overlap between HL

and MS at the genome-wide level (including HLA), poly-

genic risk scores, termed MS genetic burden (MSGB) and

HL genetic burden (HLGB) were calculated in all cases of

MS, all cases of HL and all controls used in the MS study.

Figure 3A shows the MSGB (y-axis) in each population. As

expected, the MSGB was higher in MS cases than in con-

trols (P-value < 1.0 x 10�200) and explained 8.08% of the

risk for MS (Nagelkerke’s R2). However, the MSGB was

also higher in HL cases than in controls (P-value < 2.8 x

10�35) and explained 1.94% of the risk for HL. Figure 3B

shows the HLGB (y-axis) in each population. As expected,

the HLGB was higher in HL cases than in controls (P-value

< 2.8 x 10�81) and explained 4.44% of the risk for HL.

However, HLGB was also higher in MS cases compared

with controls (P-value < 2.0 x 10�121) and explained

2.36% of the MS risk. Results shown here use a threshold

of P-value < 5 x 10�6 for including SNPs in the polygenic

risk score, which results in 76 independent SNPs used for

MSGB and 17 independent SNPs used for HLGB. Similar

results held true at other P-value thresholds. We observed

no major differences among HL subgroups.

Pathway analysis

To generate hypotheses about potential functional path-

ways that are common to HL and MS, we carried out

PINBPA in each independent dataset based on the

Table 1.Overlap of associated SNPs in HL and MS at increasing thresholds

Top MS-associated SNPs in HL

MS P-value threshold Number of SNPs associated

with MS

Number of independent

MS SNPs

Number of independent

MS SNPs also associated

with HL (FDR < 0.05)

5 x 1028 429 36 3

5 x 1027 497 50 4

5 x 1026 601 76 6

5 x 1025 825 138 4

5 x 1024 1422 386 3

0.005 4317 1715 3

0.05 24225 9107 2

Top HL-associated SNPs in MS

HL P-value threshold Number of SNPs associated

with HL

Number of independent

HL SNPs

Number of independent

HL SNPs also associated

with MS (FDR < 0.05)

5 x 1028 11 6 5

5 x 1027 23 12 9

5 x 1026 37 17 12

5 x 1025 60 30 15

5 x 1024 291 165 19

0.005 2053 1155 32

0.05 17541 7196 36

In the upper panel, top MS-associated SNPs at a given P-value threshold (column 1) are counted (column 2), thinned to include only independent SNPs (column

3). Independent MS SNPs are tested in HL for association; the number of independent SNPs which pass FDR < 0.05 in HL is shown (column 4). In the lower

panel, the top HL SNPs are counted, thinned and tested for association with MS.

LD, linkage disequilibrium; FDR, Benjamini-Hochberg false discovery rate, adjusted for the total number of independent SNPs tested.
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nominally associated SNPs. We found 100 associated mod-

ules (with threshold of score > 3) in MS comprising 1404

genes and 4050 edges, and 100 associated modules in HL

comprising 1049 genes and 3652 edges. The intersection of

the HL and MS networks yielded a network of 430 genes

and 1066 edges. A gene ontology (GO) analysis of this

intersection network using the software binGO revealed

enrichment in JUN kinase activity, antigen processing and

presentation, peptidyl-tyrosine phosphorylation and

lymphocyte-mediated immunity (Figure 4; Table S4, avail-

able as Supplementary data at IJE online). When the ana-

lysis was repeated after a seven mega-base region

surrounding the HLA was masked, the antigen processing

and presentation pathway was no longer associated but

JUN kinase activity, peptidyl-tyrosine phosphorylation and

lymphocyte-mediated immunity remained.

Diseasome analysis

To assess the relative position of HL and MS among other

autoimmune diseases and cancers (in terms of shared genetic

risk), pairwise proximities were calculated among 37 complex

autoimmune diseases, solid cancers and haematological

malignancies (Table 3), where proximity is a network-based

relatedness measure derived from shared GWAS loci between

diseases. Autoimmune diseases showed more genetic

Table 2. Non-HLA SNPs associated with both HL and MS at decreasing thresholds

Top: a grey box indicates that an SNP was associated with MS (at the P-value threshold shown in the top row), and was also associated with HL (FDR < 0.05;

adjusted for the total number of SNPs that were tested in HL at the given MS threshold). Bottom: a grey box indicates that an SNP was associated with HL (at the

P-value threshold shown in the top row), and was also associated with MS (FDR < 0.05; adjusted for the total number of SNPs that were tested in MS at the given

HL threshold). Only independent SNPs are shown (r2 < 0.1). The HLA region is omitted.

CHR, chromosome.
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similarity to other autoimmune diseases than to solid cancers

(P ¼ 3.5 x 10�38, Figure 5A), and analogously, the individual

solid cancers showed more genetic similarity to other solid

cancers than to autoimmune diseases (P ¼ 5.4 x 10�9, Figure

5C). MS was closer to other autoimmune diseases than to

solid cancers (P¼ 9.2 x 10�6, Figure 5D).

Haematological malignancies, as a group, displayed ap-

proximately equal proximity to solid cancers and autoim-

mune disorders (P ¼ 0.49 for a difference, Figure 5B).

However, when the haematological malignancies were

considered individually, HL was closer to autoimmune dis-

eases than to solid cancers (P ¼ 0.01, Figure 5E). Chronic

Figure 2. Legend. Classical HLA alleles were imputed in each disease using SNP data. Each point in each plot represents a classical HLA allele. Axes

represent the odds ratio of association for each allele in the designated disease. Protective alleles have odds ratios less than 1 (lower values on each

axis) and risk alleles have odds ratios greater than 1 (high values on each axis). (A) HLA risk alleles for EBV-positive HL tend to be neutral for EBV-

negative HL, while HLA risk alleles for EBV-negative HL are neutral to protective for EBV-positive HL. Some HLA alleles are protective for both dis-

eases. (B) HLA risk alleles for EBV-positive HL are neutral or protective for MS, and HLA risk alleles for MS are neutral or protective for EBV-positive

HL. There are a large number of HLA alleles which are protective for both MS and EBV-positive HL. (C) There is an overlap between HLA risk alleles

for MS and EBV-negative HL, and overlap between protective alleles for MS and EBV-negative HL.

Figure 3. Polygenic risk scores demonstrate overlap between diseases. Hodgkin lymphoma (HL) and multiple sclerosis (MS) polygenic risk scores in

HL cases, MS cases and healthy controls. A. MS genetic burden (MSGB) on y-axis, an aggregate measure of MS genetic risk across the genome of a

given individual (includes human leukocyte antigen region of chromosome 6). MSGB is higher in HL cases than controls, indicating genetic overlap

between HL and MS. B. HL genetic burden (HLGB) on y-axis, an aggregate measure of HL genetic risk across the genome of a given individual (in-

cludes human leukocyte antigen region of chromosome 6). HLGB is higher in MS cases than controls, indicating genetic overlap between HL and MS.
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lymphocytic leukaemia (CLL) was also closer to autoim-

mune diseases (P ¼ 0.038, Figure S2 available as

Supplementary data at IJE online) but also shared some

loci with solid cancers. In contrast, multiple myeloma

(MM) was closer to solid cancers than to autoimmune dis-

eases (P ¼ 0.08, Figure S2). Figure 6 is a graphical repre-

sentation of the proximity network between diseases.

Discussion

In this study, we undertook a series of analyses exploring gen-

etic overlap between HL and MS. We found that top HL-

associated SNPs were associated with MS, and conversely

that top MS-associated SNPs were associated with HL.

Overlap was particularly prominent in the HLA region of

chromosome 6 but also applied to non-HLA loci. Genetic

overlap between HL and MS was also observed in analyses

of disease-specific polygenic risk scores (HLGB and MSGB)

which included the HLA region. The HLGB explained

4.44% of the risk of HL and the MSGB explained 1.94% of

the risk of HL. Similarly, MSGB explained 8.08% of the risk

of MS and HLGB explained 2.36% of the risk for MS. Thus,

the MSGB captured approximately 40% of the genetic sus-

ceptibility to HL measured by the HLGB and the HLGB cap-

tured approximately 30% of the genetic susceptibility to MS

measured by the MSGB. Additionally, pathway analysis sug-

gested shared biological pathways between HL and MS,

involving a common theme of immune activation and cell

proliferation, including lymphocyte-mediated immunity,

positive regulation of JUN kinase activity (which plays roles

in cellular response to stress, T cell differentiation, inflamma-

tion and apoptosis), peptidyl-tyrosine-phosphorylation (a

non-specific intermediate step in multiple tyrosine pathways)

and antigen processing and presentation.

The shared genetic element between HL and MS suggested

by the present investigation is consistent with the original hy-

pothesis of shared associations between the two conditions

and with their previously observed mutual clustering within

Figure 4. Protein-interaction network-based pathway analysis (PINBPA) and gene ontology (GO). Four top pathways identified using GO analysis on

PINBPA networks discovered in both Hodgkin lymphoma (HL) and multiple sclerosis (MS). A. Positive regulation of JUN kinase activity. B. Antigen

processing and presentation of peptide antigen. C. Peptidyl-tyrosine phosphorylation. D. Lymphocyte-mediated immunity. Individual gene P-values

for MS and HL are indicated when P < 0.05 (*) or when P < 0.1 (‡).
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families.17,18 Therefore further investigation of pathogenic

pathways shared by these two clinically distinct conditions,

similar to those being conducted for other neurodegenerative

diseases associated with cancer risk,43 is warranted.

Both EBV-positive and EBV-negative HL44–46 and MS47

have been consistently and strongly associated with HLA al-

leles. Our study confirms that this locus confers the highest

known effect for the three phenotypes. Interestingly, in strati-

fied analyses the patterns of overlap with MS clearly differed

between EBV-positive HL and EBV-negative HL. Risk alleles

were shared between EBV-negative HL and MS, but not be-

tween EBV-positive HL and MS. These findings suggest that

EBV-positive HL and EBV-negative HL may each be inde-

pendently associated with MS, but via different genes.

The precise mechanisms underlying the HLA associations

have not been firmly established either for HL or MS. In MS,

one immune model holds that T cells, activated peripherally

by an infectious agent, cross the blood-brain barrier and in-

duce MS lesions upon reactivation by myelin fragment anti-

gens presented in the context of HLA.48 For HL, speculation

has centred primarily on its presumed infectious aeti-

ology,30,31,44 with EBV present and expressing antigens with

plausible pathogenic functions in all tumour cells and there-

fore likely playing a causative role in the EBV-positive subset

of HL.49 Moreover, like MS,22 EBV-positive HL has been

Figure 5. Diseasome analysis reveals that haematological malignancies

lie somewhere between autoimmune diseases and solid cancer. A.

Proximity of autoimmune diseases to other diseases. Density plots rep-

resent all possible pair-wise proximities between autoimmune diseases

and solid cancers (orange), and all pair-wise proximities between auto-

immune diseases and other autoimmune disease (purple). Higher de-

gree of proximity (higher values on the x-axis) indicates more genetic

similarity to autoimmune diseases. The P-value indicates that autoim-

mune diseases are closer to other autoimmune diseases than to solid

cancers. B. Proximity of haematological malignancies to solid cancers

(orange) and to autoimmune diseases (purple). Haematological malig-

nancies show genetic overlap with both solid cancers and autoimmune

diseases.C. Proximity of solid cancers to other solid cancers (orange)

and to autoimmune diseases (purple).Solid cancers are closer to other

solid cancers than to autoimmune diseases. D. Proximity of MS to all

diseases. Each circle represents a disease in the diseasome. Higher de-

grees of proximity (higher values on x-axis) represent more genetic

similarity with MS. Solid cancers are orange, autoimmune diseases are

purple, HL is white. The P-value indicates MS is closer to autoimmune

diseases than to solid cancers. E. Proximity of HL to all diseases. HL is

closer to autoimmune diseases than to solid cancers.

Table 3. Classification of immune and neoplastic diseases

from the diseasome

Autoimmune diseases Solid cancers

Alopecia areata (AR) Basal cell carcinoma (BCC)

Ankylosing spondylitis (AS) Bladder carcinoma (BLC)

Behcet’s disease (Beh) Breast carcinoma (BRC)

Coeliac disease (Cel) Central nervous system cancer (CNS)

Crohn’s disease (CD) Oesophageal carcinoma (OESC)

Graves’ disease (GD) Lung adenocarcinoma (LUA)

IGa glomerulonephritis (IGA) Lung carcinoma (LUC)

Kawasaki disease (KAW) Melanoma (MEl)

Multiple sclerosis (MS) Ovarian carcinoma (OVC)

Primary biliary cirrhosis (PBC) Pancreatic carcinoma (PAC)

Psoriasis (PS) Prostate carcinoma (PRC)

Psoriatic arthritis (PSA) Renal cell carcinoma (RCC)

Rheumatoid arthritis (RA) Squamous cell carcinoma (SCC)

Sclerosing cholangitis (PSC) Stomach carcinoma (STC)

Systemic lupus erythematosus (SLE) Thyroid carcinoma (THC)

Systemic scleroderma (SS)

Type 1 diabetes mellitus (T1D)

Ulcerative colitis (UC)

Vitiligo (Vit)

Haematological cancers

Chronic lymphocytic leukemia (CLL)

Hodgkin lymphoma (HL)

Multiple myeloma (MM)
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associated with infectious mononucleosis caused by primary

EBV infection20 and with aberrant anti-EBV nuclear antigen

antibody patterns, albeit different from those associated with

MS.19,21 Accordingly, HLA-specific variation in immune re-

sponse to EBV infection may mediate the effects of the HLA

associations shared by EBV-positive HL and MS. Although

an analogous scenario involving an HLA-specific immune re-

sponse directed against an infectious organism different from

EBV may be envisioned for EBV-negative HL, no such agent

has been linked to this HL subgroup50 or to MS as yet.

Construction of a diseasome based on disease-gene associ-

ations42 showed that the close genetic relationship between

HL and the autoimmune disease MS applied to a broad spec-

trum of autoimmune conditions and that HL was in general

closer to autoimmune diseases than to solid cancers.

Importantly, the observation was not entirely explained by

HLA, and the close relationship between HL and autoim-

mune conditions remained when the diseasome analysis was

repeated after masking a seven mega-base region surrounding

the HLA region. In line with this, there is evidence to suggest

that the risk of HL is increased in patients with autoimmune

diseases such as rheumatoid arthritis and systemic lupus ery-

thematosus.51,52 In the absence of evidence of familial cluster-

ing of HL and autoimmune diseases,53 mechanisms such as

chronic immune stimulation and/or immune-modulating

treatment have been considered the most plausible explan-

ations for the association. However, the present analyses sug-

gest that shared genetic constitution may also contribute to

the increased prevalence of HL among patients with autoim-

mune diseases (though an interaction between genetics and

immune-modulating treatment is also a possibility). Indeed,

our approach of combining GWAS data may prove more effi-

cient in demonstrating overlapping pathogenic pathways be-

tween diseases than traditional epidemiological analytical

designs, which may suffer from inadequate statistical power.

Besides HL, the diseasome analysis also included two

other haematological malignancies. Among these, CLL

was also closer to autoimmune diseases whereas multiple

Figure 6. Human disease network shows distinct autoimmune and solid cancer clusters and places hematologic cancers in context. In a network of

disease proximity, constructed using systematic GWAS data, autoimmune diseases (purple) tightly cluster. Solid cancers (orange) also form a distinct

cluster, but exhibit less relatedness in terms of genetic etiology than autoimmune diseases. Hematologic cancers (white) do not form a cohesive clus-

ter and instead ranged from autoimmune related to solid cancer related. Hodgkin lymphoma (HL), in particular, appeared strongly autoimmune. See

table 3 for a list of abbreviations.
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myeloma showed similarity to solid cancers. CLL belongs

to the group of non-Hodgkin lymphomas54 and, although

strong associations between autoimmune disorders and

CLL per se have not been noted,55 an increased risk of the

combined group of non-Hodgkin lymphomas among pa-

tients with various autoimmune diseases is well docu-

mented in the literature.56

The main limitation of the present study was the uneven

distribution of HL and MS patients with GWAS data and

the lack of independent validation datasets. These limita-

tions likely do not affect the diseasome results which are

based on multiple GWAS in each disease and are robust to

the removal of any single GWAS. However, SNP-level

summary data for other autoimmune diseases and other

cancers would have allowed assessment of polygenic risk

scores and specific genetic overlap between other pairs of

diseases that were closely associated in the diseasome, i.e.

in the same way that the genetic overlap between HL and

MS was assessed. Perhaps the diseasome analysis will pro-

vide impetus for further collaborative meta-analyses of

haematologicalmalignancies and autoimmune diseases.

In summary, this study demonstrated commonalities in

the genetic susceptibility to HL and MS as evidenced by

analyses of individual SNPs, polygenic risk scores and pro-

tein-interaction networks. Diseasome analysis further sug-

gested that HL shares a genetic architecture more similar

to that of autoimmune diseases than to solid cancers. We

speculate that autoimmune diseases and HL are different

manifestations of a shared underlying genetic syndrome.
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